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Quantile based Robust Inferencing

Quantiles can!
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* This can be defined as the negative log- = =
likelihood function, which allows to capture
guantiles of the latent.

Existing Sigmoid & Binary cross entropy
CAN’T capture the uncertainty of the
latent function f(x)

Helps in uncertainty J
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Lipschitlz constant for quantile regression using neural * Assuming that the data is generated using '= = = = 3
networks = I[f(x) + €] where f(x) is a pre-trained classifier
K, *max(t,1-1) K. = max: ||a-[L‘1]|| T = y [f( ) ] fg ) p
- iy Rz j 14y we predict P(y = 1) = [_ I[Q(x,7) = 0.5]dz
quantile (Gene Expression Inference) e Asaresult. we can =
Can capture whether or not there are samples of opposite ° make Deep Neural Networks reliable.
classes (f(x) > 0 or < 0) » decouple loss function from Quantile
Cﬁn find how far away from the median the class label representation
changes .
Confidence score (&) is correlated with miss classification e obtain quantile probabilities from any f(x)
rate (6,05 = 9); further augmented with Lipschitz L » [preserve calibration errors across distortions | )
‘ Achieves generalization
B et Makes a Classifier Distortion invariant
:_'EEE/ACM ICEB_282i| Quantile Activation can be agnostic to distortion, as a result,

Y, * needs minimal retraining for a shifted dataset
* Out -of- distribution detection
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Application Scenario 1-Object detection
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Application Scenario 2-Anomaly Detection

Anomaly Detection in Time-series data
using Quantile LSTM

A time-series dataset D comprises a set of time
periods T}, each partitioned into a set of windows w

ForaTy, Xi.= {QT(Tkj),j =1,--,w}as

predictor§ and Y, ; = Q.(Ty+1), as the response at Benefits h
a future timestep / Distribution invariant
’ * Thresholds are adaptive,
p N they change depending on
1. Estimate quantile Q,(xx4r41) With T € (0,1) quantiles
2. Define a statistic to measure the outlier-ness | Candetectevena
of the data, given the observation Xy, ¢41 singleton anoma[y; beats
. many SOTA algorithms
Compute two quantiles q;,,, and qp;4pfrom the y

current windows to forecast them in the next

time period
* Anomalies are those lying outside this range )
Tre Period Going Forward (with Quantiles)

- \ L IFEETAl 294 Multivariate Anomaly Detection (Geometric

vlelslewl|ls|e|le!ls!|e|v m ...lE_EE_Tél _2.024_| Quantiles)—addresses current limitation

*  ZERO calibration error across distortions!
T T T . *  On-device, lightweight anomaly and object
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